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Within the framework of the Boussinesq approximation, as a function of the relationship between the partial diffusion 
factors, we have investigated an isothermal three-component gas mixture with respect to linear stability. In the stable 

diffusion region the process of isothermal mass transfer is described by standard Fick equations. We have determined 
the regions of increasing (diminishing) monotonic and oscillatory perturbations. We have investigated the relationship 
between the Rayleigh numbers and the parameters of the mixture. 

A study of convective flows in multicomponent media showed that under certain conditions a rather slight change in the physical 

characteristics leads to a qualitative change in the behavior of the system. A clear illustration of this assertion is offered by formation 

of B6nard structures in thermal convection [1]. In binary systems, owing to the competition between the concentration gradients 

of the components and temperatures near the diffusion boundary of separation density-stratified regions are formed, and in the 

gravitational field this leads to the onset of convective flows [2-4]. As an example we can cite the storage of liquefied natural gas 

in a closed container, when owing to temperature and concentration nonuniformities two diverse layers are formed, with a diffusion 

separation surface between them. As the light gas fractions are vaporized, the density of the liquid in the upper portion of the 

container will be higher than in the lower portion. The system becomes hydrostatically unstable, mixing takes place, and here a 

sharp increase in pressure may lead to an uncontrollable release of gas [5]. A similar result may come about in isothermal diffusion 

in certain three-component gas mixtures [6-8]. The onset of concentration convection is associated with a number of unique features 

[7-9], the main one being the difference in the partial diffusion factors for the components [10]. The physical pattern of instability 

onset for the diffusion process in such systems involves the fact that the difference in the diffusion capacities of the components 

leads to density stratification of the gas mixture, with the subsequent onset of convection in the gravitational field. 

The present study presents an analysis of the influence exerted by isothermal mass transfer in three-component gas mixtures 

on linear stability, and we determine the regions in which stable diffusion exists, the latter being described by Fick equations, and 

finally, we determine areas of diffusional instability. 

Let us examine an ideal incompressible isothermal three-component gas mixture at constant pressure, contained between 

two parallel planes. In the derivation of the three-convection equations we usually resort to the small perturbation method [1] 

in which the thermodynamic variables cl, c 2, and P are represented by added factors calculated from certain constant mean values 

Cl ~ c2~ and P0. We will assume that the density nonuniformities generated by nonuniformity in pressure are negligibly small. 

As regards the density nonuniformities generated by concentration nonuniformity, the latter is assumed to be small in comparison 

with the mean density P0 and disappears at the boundaries of the planes. When we take into consideration the condition of independent 

diffusion, which presumes the description of the mass component transfer by partial coefficients which in the center-of-mass system 

[11] are identical with the effective diffusion factors (EDF) [12, 13], and assuming these to be constant for the given mixture composition, 

in the Boussinesq approximation (the density nonuniformities are taken into consideration in the term containing the lift force 

in the Navier--Stokes equation of motion) the following system of equations to describe mass transfer as follows: 

Oc a Oc z 
- -  -~- u V C  1 = O l V 2 g t ,  - -  + u V C 2  = D 2 v 2 c 2 ,  

Ot Ot (1) 

Ou 1 
- -  + ( u v )  u - v P  + v A n  + g (~c~ + ~.,c~) ,;, 

Ot P0 

where/3 k = 1/Po(Op/0%), while 7 is the unit vector directed vertically upward. 

Let us formulate the boundary conditions. Following [1, 3, 14-16], we will assume that the tangential stresses disappear at 

the boundary, with the zero-valued normal flow component and the convective fluctuations that arise not leading to any strains 

at the boundaries. The concentration value has been fixed at the boundaries and, consequently, the perturbation of this value disappears 

at the boundaries. When we take all of this into consideration, we find that 
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z = 0 ,  d; c ! = = c 2 = 0 ,  u = 0 ;  0cl _ Oc.~ --0. (2) 
On On 

The condition of mechanical equilibrium is written in the ferm 

u = 0,  od o~ ~ 
0 ~  - 0 ~  - 0,  ([3xvc~ q-  [5~v c~ ? = 0. (3)  

The equation of state within the scope of an ideal gas will be presented in the following form: 

P = 9o (1 q- [5~c~ q- 150c~). (4) 

Let us make dimensionless the initial system of differential equations relative to the time scale d2/D3, the linear dimension 

d, the distance between the plates, and relative to the original physical characteristics: D 3, the partial diffusion factor for the third 

component (used as one of the scale units for the diffusion factor of the third component, whose flow is defined in terms of the 

linear combination of the two remaining components, thus making it possible, in explicit form, to account for its influence as well) 

and v, while for the concentration gradient we will use the scale --Acid. We will introduce the stream function for velocity perturbations 

r z). With the diffusion model [12, 13] and the Boussinesq approximation [1, 14, 15] satisfied, following linearization, we derive 

a system of equations for the dimensionless perturbations in c I and c2: 

0cl ~ V2C~ Oq'~ Oc~ .qVzC~ " _ O~,~ 
Ot Ox Ot Ox 

(5) ( 1  0 ' ( OCx 0c2 , 
Pr O~ V2) U21~ = "gl t~1 ~ x - x  q[- "t72 t~2 - ~ x  ) 

when 

z = 0 ,  1; c 1 - - c 2 - - ~ - - 0 .  (6) 

The similarity parameters in the problem are Pr = v/D 3, the diffusion Prandtl number, R 1 = gill ACld3/~D1 and R 2 = gfl2Ac.2d3/PD2, 

the diffusion Rayleigh numbers  for  the first and second components of  the gas mixture,  respectively; r 1 = D1/D 3 and r 2 -- 

D2/D3, quantities characterizing the relationship between the EDF. The mutual direction of the concentration gradients 

for the components  is determined through a specific formulation of the problem and will be dealt with later on. 

Introduction of the parameters  r x and r 2 allows us to determine the contribution of each component  to the phenomenon 

of diffusion instability, which distinguishes isothermal concentration convection f rom instability in a binary mixture 

in the presence of a temperature  gradient such as the one dealt with by Nield [16]. For a binary system the concentration 

characteristics of  the components govern one of the diffusion factors, while in the case of  a three-component  mixture 

these characteristics determine three diffusion factors as a minimum (when described by partial factors). In this 
connection, the introduction of the parameters r i and a slight change in the solution of system of  equations (5) make 
it possible, in  our opinion, more fully to account for the unique features of  mass transfer  in three-component  gas 

systems. 
We will look for the solution of the boundary-value problem (5), (6) in the following form: 

~. = g:~ sin (ztax) sin (ztnz) exp [ - -  ~tl, 

}'t {~: ={~ i  cos(~ax)sin(zmz)exp[--)~t]. (7) 

After we have substituted (7) into system of equations (5), and eliminating the constants cl 1, ez 1, and r sequentially, we derive 

the following cubic equation for the perturbation decrement ),: 

)~ q- r)~ 2 q- s)~ + q = 0, (8) 

where 

r = - -  k" (Xl q- x~ § Pr); 

~ / ~ -  �9 
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Fig. 1. Neutral lines and regions in which monotonic and oscilla- 

tory disturbances exist: 1) region of stable diffusion; 2) region 

of monotonic instability; 3) region of oscillatory instability; MM 

and OO) neutral lines of monotonic and oscillatory perturbations 

at points A, B, C, while D corresponds to the experimental data 

from [7-10, 17, 19]. 

On solution of Eqs. (8), depending on the parameters r, s, and q, we can obtain either three real roots (monotonic perturbations), 

or one real and two complex-conjugate roots, which describe the oscillation perturbations. Assuming that ,~ = c~ + i0~, according 

to (8) we can derive a system of equations for the real and imaginary parts of  the decrement: 

cz 3 - -  3~0 z -}- r (~z __ ~oz) -k s~ q- q = 0, (9) 

~o [3~ 2 - -  co 2 @ 2~r -k s] = 0. (10) 

We will determine the boundary of instability for the monotonic and oscillatory perturbations. At the stability boundary we have 
o~ = 0. It then follows from (9) and (10) that 

q - -  ro~ z = 0, (11) 

c0 (s - -  (02) = 0. (12) 

In the case of  monotonic perturbation we have w = 0 (the neutral perturbation is steady) and from (12) we have q = 0, which 
gives US 

R1 --  R2. (13) 
(~a) z 

If the perturbation oscillates at a frequency 0J at the boundary of stability, and this frequency is different from zero, it then follows 
from (12) that w z = s, i.e., the frequency of the neutral oscillations has the form 

~ = h~'c~ x2 -l- Pr [ ('q -k "c2) k" -l- , le ] ] (~a  ]2(.c,R~q_,~2R2) " 
(14)  

The complex consisting of the critical Rayleigh numbers characterizing oscillatory instability is found from expression (10), according 
to which rs - -  q = 0, i.e., 

R 1 - -  k a {(xl q- x2 + Pr) [* l~  q- Pr (xl + T.~)I - -  xlx2 Pr} 

(aa)2('~l -~- Pr) T1 P r  

�9 2 (x2 -k Pr) R2. 
~1 ('q q- Pr) 

(15) 

Expressions (13)-(15) characterize the areas of  stable (unstable) diffusion. 

Three-component  gas mixtures were analyzed for stability with the aid of  (13) and (15) and we will illustrate this analysis 

on the example of  the ideal gas system Ar (1)--N 2 (2)--He (3) (the numbering of the components is indicated in parentheses), which 

may be located in any of the three areas (see Fig. 1), classified as follows in analogy with [1]: 1) the area Of stable diffusion (the 

333 



process is described by standard Fick equations); 2) the area of monotonic disturbances; 3) the area of oscillatory disturbances. 

It is obvious that if R 1 > 0 and R 2 > 0, the system is hydrostatically unstable, which corresponds to a situation in which a heavier 

mixture such as, for example argon with nitrogen, is located in the upper portion of the diffusion mechanism, while helium is located 

in the lower portion. Experimental data [8, 17] showed that mixtures similar to 0.5N 2 (2) + 0.5Ar (1)--He (3) (the component 

concentrations are given in mole fractions) generate hydrodynamic-type instability (the point A is located in the first quadrant). 

When R 1 < 0 and R 2 < 0, the mixture being tested is in the stable state, i.e., the density of the gas in the upper portion of 

the diffusion channel is lower than the density of the mixture in the lower part. For the triple system He (3)--0.5At (1) + 0.5N 2 

(2) in the case of a two-column device [18] (this will be the case when the binary argon--nitrogen mixture is in the lower portion 

of the diffusion apparatus, while helium is in the upper portion) experimental studies [19] demonstrated the stable nature of the 

diffusion process in various temperature regimes (the point B is situated in the third quadrant). 

The three-component mixture 0.5He (3) + 0.5N 2 (2)--Ar (1), corresponding to the case R 1 < 0 and R 2 > 0, will be stable 

when the components are ideal gases. Results from [6] show that this system is stable from the standpoint of diffusion (the point 

C is in the fourth quadrant). If we assume that one of the components of the binary mixture is a real gas (for example, methane, 

carbon dioxide, halogen-derivative carbohydrates), it may turn out with a change in the conditions (we have reference here to a 

different compressl"oility z for the original components) in terms of density the mixture may surpass a pure component, and hydrodynamic 

flows may therefore be set up within the system. However, this question must subsequently be studied on its own, both experimentally 

and theoretically. 

Of greatest interest, in our opinion, is the problem related to research into the stability of equilibrium systems in the Rayleigh 

number range R 1 > 0 and R 2 < 0, where gas mixtures analogous, for example, to He (3) + Ar (1)--N 2 (2), will be unstable from 

the standpoint of diffusion. Experimental data from [7-10, 17] showed that in triple mixtures with markedly diverse values for the 

diffusion factors of components under specific conditions convective flows are generated, and these significantly distort the process 

of isothermal diffusion mass transfer. Starting from a specific critical parameter (pressure, the diameter of the diffusion channel, 

temperature) a system in the stable state turns unstable, and here complex oscillation regimes are observed, these related to the 

change in the composition of the mixture. 

The neutral lines of the monotonic and oscillatory disturbances form the systems H 2 + At--N2, He + Ar--N2, He + N2--CH4, 

H 2 + N2---CH4, H 2 + N2--Ne, depending on the mixture parameters rl, r2, and Pr, can be seen in Fig. 2. It might be noted that 

an increase in the parameter r 2 leads to a reduction in the critical Rayleigh number, which suggests destabilization of the system. 

For example, for a 0.5He (3) + 0.5Ar (1)--N 2 (2) mixture when r 2 = D2/D 3 ~ 1, in the place of the nitrogen in the system being 

tested we should have a lighter gas (helium, at the very least). In other words, the system exhibits hydrodynamic disturbances. 

As demonstrated by special studied such as those conducted in [8], when a denser gas is mixed with one that is less dense, convective 

currents arise considerably earlier than is the case with diffusion unstable systems. Conversely, when r I = D1/D 3 ~ 1, the unstable 
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Fig. 2. Mutual position of the MM monotonic perturbation and OO oscillatory perturbation lines, 

corresponding to the following mixtures: a) O101: 0.5He + 0.5Ar-- N2;O202: 0.5H 2 + 0 . 5 A t ,  N2; 

0303: 0.5He + 0.5N2---CH4; b) O101: 0.5H 2 + 0.5N2--CH4,O202: 0.5H 2 + 0.5N2--Ne; P = 
0.1 MPa, T --- 300 IC 
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process undergoes stabilization. Then, for a given mixture, the place of argon must be occupied by a lighter gas and in the limit 

case the triple mixture degenerates into a stable binary He--N 2 system. Analysis of this triple gas mixture in terms of stability, 

depending on the viscosity of the mixture (Fig. 2b), shows that the critical Rayleigh numbers corresponding to monotonic disturbances 

remain constant. With an increase in viscosity, the onset of an oscillatory regime is more likely in systems in which the viscosity 

is lower. This conclusion apparently requires more detailed verification which, unfortunately, could not be undertaken owing to 

a lack of published data. Let us note that it is exceedingly complex in the experiment to determine the boundaries of stable diffusion, 

of monotonic and oscillatory disturbances for three-component systems, and we can therefore speak only of qualitative agreement 

of the analysis with respect to linear stability within the scope of a plane layer exhibiting a true pattern of diffusion instability, such 

as that observed in the vertical cylindrical tubing of closed diffusion equipment [7-10, 16]. 

Thus, the onset of isothermal diffusion instability in multicomponent gas systems significantly distorts the normal course of 

the exchange of mass. Diffusion, which exerts a stabilizing role in the case of binary systems, for three and more components will 

lead, in certain gas mixtures, to the onset of density stratification in specific areas and to the appearance of dissipative convection 

structures. This must necessarily be taken into consideration in the designing of chemical-engineering equipment and in measuring 

the constants of heat and mass transfer. 

NOTATION 

ci, excess (in terms of the average) concentration of the i-th component; t, time; u, velocity; Di, partial diffusion factor for 

the i-th component; P, convective addition to the hydrostatic pressure P0, corresponding to the average values of concentration 

for the components and the average density P0; v, viscosity of the gas mixture; g, gravitational acceleration; % unit vector directed 

upward along the vertical; ~b(x, z), stream function; x and z, axes of the Cartesian coordinate system; Pr = v/D3, partial diffusion 

Prandtl number; Ri = g/~iAcid3/vDi, partial diffusion Rayleigh number of the i-th component; d, thickness of layer, identical to 

the diameter of the diffusion channel; z, dimensionless parameter characterizing the relationship between the partial diffusion factors; 

A, decrement, defining the course of the disturbance; o~, frequency of neutral oscillations; z, compressibility of the component. 
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